Proteomic and functional analysis of the mitotic Drosophila centrosome.

نویسندگان

  • Hannah Müller
  • David Schmidt
  • Sandra Steinbrink
  • Ekaterina Mirgorodskaya
  • Verena Lehmann
  • Karin Habermann
  • Felix Dreher
  • Niklas Gustavsson
  • Thomas Kessler
  • Hans Lehrach
  • Ralf Herwig
  • Johan Gobom
  • Aspasia Ploubidou
  • Michael Boutros
  • Bodo M H Lange
چکیده

Regulation of centrosome structure, duplication and segregation is integrated into cellular pathways that control cell cycle progression and growth. As part of these pathways, numerous proteins with well-established non-centrosomal localization and function associate with the centrosome to fulfill regulatory functions. In turn, classical centrosomal components take up functional and structural roles as part of other cellular organelles and compartments. Thus, although a comprehensive inventory of centrosome components is missing, emerging evidence indicates that its molecular composition reflects the complexity of its functions. We analysed the Drosophila embryonic centrosomal proteome using immunoisolation in combination with mass spectrometry. The 251 identified components were functionally characterized by RNA interference. Among those, a core group of 11 proteins was critical for centrosome structure maintenance. Depletion of any of these proteins in Drosophila SL2 cells resulted in centrosome disintegration, revealing a molecular dependency of centrosome structure on components of the protein translation machinery, actin- and RNA-binding proteins. In total, we assigned novel centrosome-related functions to 24 proteins and confirmed 13 of these in human cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monastral bipolar spindles: implications for dynamic centrosome organization.

Implicit to all models for mitotic spindle assembly is the view that centrosomes are essentially permanent structures. Yet, immunofluorescence revealed that spindles in larval brains of urchin mutants in Drosophila were frequently monastral but bipolar; the astral pole contained a centrosome while the opposing anastral pole showed neither gamma tubulin nor a radial array of astral microtubules....

متن کامل

Establishment and mitotic characterization of new Drosophila acentriolar cell lines from DSas-4 mutant

In animal cells the centrosome is commonly viewed as the main cellular structure driving microtubule (MT) assembly into the mitotic spindle apparatus. However, additional pathways, such as those mediated by chromatin and augmin, are involved in the establishment of functional spindles. The molecular mechanisms involved in these pathways remain poorly understood, mostly due to limitations inhere...

متن کامل

Differing requirements for Augmin in male meiotic and mitotic spindle formation in Drosophila

Animal cells divide using a microtubule-based, bipolar spindle. Both somatic, mitotic cells and sperm-producing male meiotic spermatocytes use centrosome-dependent and acentrosomal spindle-forming mechanisms. Here, we characterize the largely undefined, centrosome-independent spindle formation pathway used during male meiosis. Our live and fixed cell analyses of Drosophila spermatocytes reveal ...

متن کامل

Centriole and centrosome cycle in the early Drosophila embryo.

Centriole and centrosome cycles were examined by indirect immunofluorescence and electron microscopy techniques in the early Drosophila embryo. The centrosomes, which are already divided at interphase, appear as compact spheres during prophase and metaphase, expand and flatten from anaphase to telophase and split into two units in late telophase. Centriole separation starts in late metaphase, b...

متن کامل

The Drosophila Protein Asp Is Involved in Microtubule Organization during Spindle Formation and Cytokinesis

Abnormal spindle (Asp) is a 220-kD microtubule-associated protein from Drosophila that has been suggested to be involved in microtubule nucleation from the centrosome. Here, we show that Asp is enriched at the poles of meiotic and mitotic spindles and localizes to the minus ends of central spindle microtubules. Localization to these structures is independent of a functional centrosome. Moreover...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 29 19  شماره 

صفحات  -

تاریخ انتشار 2010